
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

FLOWCHART

A COMPUTER PROGRAM FOR PLOTTING FLOWCHARTS

by Bernice Bender

Open File Report 82-999

1982

This report is preliminary and has
not been reviewed for conformity with
U.S. Geological Survey editorial
standards. Any use of trade names is
for descriptive purposes only and does
not imply endorsement by the USGS.

FLOWCHART
A Computer Program for Plotting Flowcharts

by Bernice Bender

Abstract

The computer program FLOWCHART can be used to very quickly and easily produce
flowcharts of high quality for publication.

FLOWCHART centers each element or block of text that it processes on one of a set of
(imaginary) vertical lines. It can enclose a text block in a rectangle, circle or other
selected figure. It can draw a line connecting the midpoint of any side of any figure with
the midpoint of any side of any other figure and insert an arrow pointing in the direction
of flow. It can write "yes" or "no" next to the line joining two figures.

FLOWCHART creates flowcharts using some basic plotting subroutines 1 which
permit plots to be generated interactively and inspected on a Tektronix
compatible graphics screen or plotted in a deferred mode on a Houston
Instruments 42" pen plotter. The size of the plot, character set and character
height in inches are inputs to the program. Plots generated using the pen
plotter can be up to 42" high the larger size plots being directly usable as visual
aids in a talk.

FLOWCHART centers each block of text on an imaginary column line. (The
number of columns and column width are specified as input.) The midpoint of
the longest line of text within the block is defined to be the center of the block
and is placed on the column line. The spacing of individual words within the
block is not altered when the block is positioned.

The program writes the first block of text in a designated column and
continues placing each subsequent block below the previous block in the same
column. A block of text may be placed in a different column by specifying the
number of the column and an earlier block of text with which the new block is to
be aligned. If block zero is given as the earlier block, the new text is placed in
the new column continuing down the page below the previous block. Optionally a
column and number of inches from the top of the page may be given for
positioning the next block of text.

The program will normally draw one of five types of figure to enclose a block
of text: a rectangle, circle, diamond, eight sided figure or figure with parallel
sides and rounded ends. It can connect the figure with a line to the proceeding
figure, and place an arrow pointing toward the second figure. Text blocks not in
sequence can also be connected and "yes" or "no" written next to any line to
indicate branching.

Figure 1 illustrates the various types of figures that can be drawn, spacings,
connecting lines and the like.

1 The plotting package employed is Buplot available on the VAX and PDP-1170 computers
at the USGS Office of Earthquake Studies, Golden, Colo. Calls to the plotting subroutines
must be adjusted if some other plotting package is used.

FL
O

W
C

H
A

R
T

d
et

er
m

in
es

th

e
le

n
g
th

of

 t
h

e
lo

n
g
es

t
li

ne
 i

n
a

b
lo

ck

of
 t

e
x

t
an

d

ce

n
te

rs
 t

h
e

en
ti

re

bl
oc

k
ar

o
u
n
d
 t

h
is

 l
in

e.

ca
n

 p
la

ce
 t

ex
t

al
m

o
st

an

y
w

h
er

e.

It

d
o
es

 n
o

t
n
ee

d
 t

o

be

en
cl

o
se

d

or

co

n
n

ec
te

d

to

o

th
er

 t
ex

t.

\/

N
or

m
al

ly
 t

h
e

ne
xt

 b
lo

ck
 i

s
'

di
re

ct
ly

 b
el

ow
 t

he
 p

ro
ce

ed
in

g.
f

H
av

e
yo

u
ha

d
en

ou
gh

?
j

S
ha

ll
 7

70

p
la

ce
 t

h
e

n
ex

t
|

b
lo

ck
 t

o

th

e
le

ft
?

I

T
ex

t
h
er

e
is

 c
en

te
re

d
 v

er
ti

ca
ll

y
ac

ro
ss

 f
ro

m

"n
o"

T
hi

s
is a lo
ng

bl

oc
k.

;
\

Y
ou

r
tu

rn
.

1
qu

it
.

I
._

._

_
._

._
/

"W
e

ca
n

en

cl
o
se

 t
e
x

t
in

fi

g
u

re
s

of
 d

if
fe

re
n
t

sh
ap

es
.

"W
e

-w
an

de
r

to
 t

h
e

ri
g
h
t

in
st

ea
d

of

co

n
ti

n
u
in

g

do
yr

n
th

e
p
ag

e.

F
ig

u
re

1

.
E

xa
m

pl
e

o
f

a
fl

o
w

c
h
a
rt

c
re

a
te

d

u
si

n
g

th

e

p
ro

g
ra

m

FL
O

W
CH

A
RT

Inputs

FLOWCHART obtains the text to be;diagrammed, positioning instructions and
the like from a data file. The inputs used to generate the flowchart in figure 1
 are given in Appendix A and illustrate the instructions defined below.

 All inputs are free "field. An input that is "blank" Tnay be omitted. Although
^normally ~on "the computer employed free field character inputs must be
.enclosed -with a single quote (for example, the character s would normally be
input as^.s*), quotes are not necessary ihere. One or more blanks or commas can
be used to separate inputs on a line but delimiters are required only between
two successive numbers, not between two letters or numbers followed by or
preceeding letters (for example, both lip and lip are acceptable.)

First Input Line: (size and spacing initialization)
icol, xiolw. y, ht

icol: column on which first block of text is to be centered
colw: width of one column in inches

y: page length (or height) in inches
ht: character height in inches (this text is .10 inches in height).

(Figure 2 illustrates the parameters icol, colw and ht.)

Subsequent inputs are of two types, either text type or instruction type. Inputs
generally consist of two or more lines.

Text Type Input:

The first line of this type of instruction tells how many lines of text follow,
whether to enclose the text in a box, rectangle, circle or some other figure,
whether to connect this block of text to the preceeding block, and (optionally)
provides a number to identify this block of text. Subsequent lines contain the
text to be plotted.

(Line l)
ict, ibcd, In, nument

ict: number of lines in block of text that follows
ibcd: type of figure in which this text is to be enclosed (see figure 1).

b: box or rectangle
c: circle
d: diamond
r: figure with parallel sides and rounded ends
o: eight sided figure

blank: no enclosure

The current block of text will normally be connected with a straight line to the
last block read in, and an arrow head will point to the current block.

In:
jc: omit line.
y: write "yes" on the line joining this block with the preceeding
n: write "no"
a: join this block of text to preceeding block, but omit arrow head

(writing "yes" or "no".is not permitted in this case)
blank: line and arrow are drawn, but neither "yes" nor "no" is written.

(Tho vertical dashed lines -were not done by the program.
They were inserted later to indicate column spacings.)

Here -we look at
column spacing.

In this example, columns
are one inch apart.

This text is centered
on column 3.

This text is centered
on column 5.

Here we are
in column 4.

This size is .08 inches.

This size is .12 inches
It takes more space.

We may wish to change
column width

if we
type.

use this size > Or we can use only every
third column for centering.

i i ; , '
Figure 2. Illustration of symbol size, column -ftidth, and text spacing.

nument:
mum: number that identifies this block of text.
.blank: number blocks sequentially.
"Numbers are used for identifying blocks in instructions for positioning and

rconnecting text. Note that If the default (sequential) numbering is used and
I blocks are Inserted -or deleted, the remaining text blocks will be assigned new
-.numbers.

Next ict lines:
Block ;of rtext (ict lines) to be inserted. Blank text lines are permitted; a

.single .blank line (ict=l) may be used to define a position for one end of a
straight line segment. (For examples, see figure 3 and figure 4).

Text will be reproduced in the flowchart as it appears in the data file; no
spacing adjustments will be made within blocks.

"InstructionType Input:

'Normally subsequent blocks of text will be positioned in a single column,
with each subsequent block of text placed below the preceeding block. The

"instruction" lines enable one to place a new block of text in a different postion
(say in a:new column across from a block previously entered), or to selectively
connect blocks that were not entered in sequence. It should be noted that the
program performs operations as it encounters them. Therefore, it cannot, for
example, .connect blocks of text that have not already been entered as input.

An "instruction" input also enables one to change character size or advance
to a new page (begin a new flowchart).

(Line 1)
ict, ibcd. In. yn

ict: Not used. -ict==0 will terminate this run, so set ict=l or some
other integer,

ibcd: .
I: indicates this is an'"instruction" rather than "text" type input.

In: type of instruction (further explained below)
c: -connect two figures with a line
p: position the next block of text across from a previous block
q: position the next block of text the designated

number of inches from the top of the page.
a: advance to the next page
s: .change character size

yn: (used only with the c(onnect) instruction)
_y: write "yes *' on the line joining the two figures specified
 n: write "no" on the line joining the two figures
 a: omit arrow "head on line (cannot write '^yes" or "no" in this case)

.blank: do not write anything

.All but the "advance" instruction require a-second line. The second line of input
for -on instruction is as follows:

If ln=c: (connect two blocks with a line) next input is:
pi nil p2 n!2

plz n(north), e(east), s(south), w(west)
nil: number identifying first block of text

A blank input can
be inserted to
create a node

\ / for the end of
a line segment

Figure 3. The data file for this illustration contains four
blocks of text. The second block consists of a single blank
line and is used to create an end point or node for a line
segment. This explanation is the fourth block.

Character
Printer

Data lines
Analog-Digital

Converter
PDF-11/23

CPU
PDP-11/23

CPU

80 Mb Disk
(Dual Port)

1600 bpi Tape
Copier

or
Plotter

PROPOSED SYSTEM FOR PANAMA NETWORK

Figure 4. Blank lines are inserted in blocks of text to obtain the spacings.

4

p2: n(north), east(east), s(south), w(west)
. n!2: number identifying second block of text
Connect a line from the center of the pi edge of the figure containing text
labeled nil with the center of the p2 edge of the figure identified by n!2. An
arrow head on the line points to figure n!2 unless input yn=a.

If ln=p (positioning instruction) next input is:
newcol n!2

newcol: column in which next text entry is to be positioned
jil2: center text in column newcol across from text entry labeled n!2.

If ln=q (positioning) next input is:
^newcol yval

newcol: column in which next text entry is to be positioned
yval: place top of next block of text yval inches down from the top of the

page.

If ln=a (advance):
No second line. This is an instruction to advance the frame or begin a new

page. The top of the next block is placed at the top of the new page in the same
column that it would have occupied on the proceeding page. All positioning and
connecting Instructions relating to blocks on the current page must be
completed before advancing to a new page.

The program will automatically begin a new page if a text entry would have
been positioned below the bottom of the current page. Placing text on a new
page leads to trouble if one tries to connect text blocks that are on separate
pages.

If ln=s (change character size) next input is:
.ht

ht: new character size in inches for all text that follows.

The input is terminated by setting ict=0.

Debugging:

It is possible to run the program in such a manner that text inputs and
spacing instructions are printed out. but no plots are drawn. This debugging
mode is helpful in locating input errors. If the program terminates due to an
input error, the last line printed should be within one line of the error. This
mode can also provide information that may be used in selecting column width
and positioning text. Printed are the block of text, and

nument: number identifying block of text
xval: center of block (inches)
ysav: top of this block of text in inches (from top of page)
rmax: length of longest line of text in this block

xmi.xpl.ymi.ypl: coordinates of the corner points of the smallest rectangle
containing the figure surrounding this block of text.

Running the program.

The input text and instructions are assumed to be available on an input data
file. You will be asked at the terminal to:

"Enter-name oT file containing flowchart input"

Several questions must also be answered at the terminal at run time. These are:

"Is this a debug run" answer y(es) or n(o)"
(Debug run gives only printout as described above in discussion under

debugging ^)

The "next two questions are asked only if this not a debug run.
"Enter j>ririt type use 1 unless final copy then 2"

Jn the plotting package used, print type 1 is the standard character set; it is
faster and more compact than type 2 which features shading and seraphs, and is
suitable for publication.

Print type 1 should be used for all but the final copy.

"Plot mode (i=immediate, d=deferred, e=edit)"
i=iinmediate gives immediate output on the Tektronix
d=defers output to file pltfl.dat
e: edit, gives immediate output which can optionally be saved on pltfl.dat.

A listing of FLOWCHART is provided in Appendix B. The questions that must
be answered at the terminal may need to be altered within the program
depending on the plotting package employed and graphics hardware available.

8

Ap p end i x A

Inputs on for010.dat for flowchart shown in Figure 1

place the ne x t
the left?

41. 7. .07
1 c 1
START
4 b 2
FLOWCHART determines the length^
of the longest line in a block'
of text and centers the entire
block around this line.
2 b 3
Normally the next block is
directly below the preceeding.
2 o 4
Shall we
block to
1 i p
5 O
5 b 5
This

i s
a

1 ong
block,
lien
s 4 n 5
1 i p
4 O
3 o 6
We can enclose text in
figures of different
shap es.
1 i p
6 6
3 r 7
We wander to the right

instead of
continuing down the page.
 lip
6 3
1 d 8
*Up is ok also.
1 i p
8 3
1 r 9
Have you had enough?
lip
9 4
1 c x 10
STOP
1 i c y
s 9 n 1O
1 i p

7 10
2 o x 11
Your turn.
I quit.
lien
s 9 n 11
1 i p
7 2
3 x 12
 *We can place text almost anywhere
It does not need to be enclosed
or connected to other text.
1 i q
8 O.
2 b x
FLOWCHART
EXAMPLE.
1 i p
3 5
2 b x
Text here is centered vertically
across from "no" answer.
1 i c y
s 4 n 1.4
lie
s 14 n 6
O

App end i x D

FLOWCHART: Computer Program Listing

10

c FLOWCHART*
c Program for drawing Flowcharts
c

characterise title,buf(1OO), ro(SO)
common/ara/iara/jchar
common/jnum/jnum(6)
character iara(80),jchar(6)

character*! ibcd, debug. In, yn, pi, p2, p3, p4, tlen
dimension xplsv(lOO), yp1sv(1OO)» xmisv(100), ymisv(100)
common/xypm/xp 1, xmi, ypl, ymi, ht
dimension icols(10O),yss(1OO)
character#20 filen
common/pp/tlen(30)

print 1O
1O formatt' Enter name of file containing flowchart input')

read 20, filen
20 format(a2O)

open(unit=10,file=filen, status= / old / , err=3O)
go to 5O

3O print 4O
4O format(' error accessing file-check filename')

call exit
5O print 60
60 format(' Is this a debug run answer y(es) or n(o) 7)

read 9O,debug
if(debug. eq. 'y') go to SO

print 7O
7O format(' Enter print type use 1 unless final copy-then 2')

read*, i p typ
8O read(10,#) icol,colw,yb,ht
9O format(al)

y b o tm=O.
deltax=l.l#ht
deltah=l.8*ht
delth2=deltah/2.
arrow=deltax
arrow2=arrow/2,
iad j=O
nent=O

c nent=number of entries thus far records posit ions,etc
c first read starting column and col width

xcent=colw+(icol-l)#colw
xcents=colw
yypp=yb+l.
yvalst=yb-lO.*ht

1OO if (debug.ne. 'y') go to 11O
call plots (l,yypp)
go to 12O

11O call p lots(5,yypp)
call ctype(iptyp)

120 call plot(. 5, . 5, -3)
130 yval=yvalst

i suj=O
140 read <1O,44O) (iara(iq)* iq=l.80)

call decod
ic t-jnum < 1)

11

ibcd=jchar(1)
ln=jchar(2)
yn=jchar(3)
nument=jnum(2)
if(ibcd.eq. 'i')go to 4OO
if (iadj.eq. 1) y va l=y va 1 + i c t *d e 1 th2
y sav=yva1
iad j=0
if(yval . gt. ybotm) go to 16O
if(debug. eq. 'y') go to 15O
call hldplt(. 6, . 6, 1, ro)
call advp1t
call p lots(0* yypp)

15O yval=yvalst
i su»=0

16O if(ict. eq. 0) go to 390
numsav=nent
nent=nent+l
if(nument. ne. O) nent=nument
lsav=O
rma x=O.
do 190 i = l, ict
readdO, 17O, end=39O) buf(i)
l=length(buf(i))
if (1. gt. Isav) lsav=l

17O format(aBO)
call symlen(ht, buf(i), l>rmin>rsav)
if(rsav. gt. rmax) rma x=r sav
if(debug.ne. 'y') go to 19O
print 180* nent, (tlen(ii)* i i = l, 1)

18O f ormat (i5, Ix, SOal)
19O continue

xva l = xcent-rmax/2.
do 2OO i = l, ict
if (debug, ne. 'y') call symbol < xval* yval* htt buf (i)> 0* Isav)

20O yval=yval-deltah
c yrt=right most symbol location
c Set limits for enclosure around text thru

i f (rmax. ne. 0.) go to 21O
xleft=xval
xrt=xval
go to 220

c xlef t/ xrt* y lef ti yrt
21O xleft=xval-deltax

xrt=rmax+xval+deltax
c correct spacing for border around text

22O yup=ysav-»-deltah-«-ht/2.
ylow=yval+ht/2.
icols(nent)=ict
yss(nent)=y sav
if(debug.ne. 'y') go to 24O
print 230i nent* xvali ysav* rmax

23O format< ' nent» xval> ysav> rmax='i4* 3f7. 3)
24O if(ibcd.ne. 'r') go to 25O

call rndend(xleft* xrt> yupi glow)
go to 300

25O ifdbcd.ne. 'b') go to 26O
enclose text in box
call box(x1eft,xrt*yup,ylow)
go to 30O

260 ifdbcd.ne. 'c'> go to 270
enclose text in circle
call cirele(xleft,xrt>yup.ylow)
go to 3OO

27O ifCibcd.ne. 'd') go to 280
enclose in diamond shaped figure.

call d iam(x lef t* xr t, y up, y 1 ow)
go to 3OO

280 ifdbcd.ne. 'o') go to 290
enclose text in eight sided figure

call oct<x1eft, xrt/yup,ylow)
go to 30O

no enclosure must still set x/y values
290 call nothing(x1eft/ xrt, yup , y1ow)

this position was blank supposedly so uie must correct
ln=jchar(1)
yn=jchar(2)

save current positions for future spacing
3OO xplsv(nent>=xpl

xmisv(nent)=xmi
yp1sv(nent)=yp1
ymisv(nent)=ymi
if (rmax. ne. O) go to 310
only entry was a blank line used for later positioning
yplsv(nent) = (ypH-ymi)/2.
ymisv(nent)=yplsv(nent)
ypl=yplsv(nent>

310 if(debug. ne. 'y') go to 330
print 32Oi nent, xmi. xp 1, ymi, y p 1

32O format(' nent='i3' limits at xmi , xp1,ymi, yp1='4f7. 3)
go to 380

33O ifdn. eq. 'x') go to 380
ifdsw. eq. 0) go to 380
if (isiu. eq. 2) go to 410

the default with iline=blank is to draw line
call p1ot(xcent* ymisv(numsav) i 3)
call plot(xcent.yp1»2)
dram arrow
y centa=y p 1+arroui
xcenta=xcent+arrow2
ifdn. eq. 'a') go to 340
call plot<xcenta*ycenta,2)
xcenta=xcent-arrou2
call plot(xcent.yp1 > 3)
call p1ot(xcenta*ycenta,2)

34O continue
write 'yes' or 'no' for question branch?

35O ifdn.ne. 'y') go to 36O
title='yes'
go to 37O

36O ifdn.ne. 'n') go to 380
title='no'

13

370 ymid=<ymisv(numsav)+yp1)/2.
xcentp=xcent+deltax
call symbol(xcentp/ y mi d * h t* title/0/ 3)

380 continue
isuj=l
yval=ymi-3. 5*deltah
go to 14O

39O if(debug.ne. 'y')call endplt
call exit

change columns
4OO continue

ifdn.ne. 'a') go to 43O
if(debug.eq. 'y') go to 1OO

call hldplt(. 6, . 6, 1* ro)
call advp1t
go to 1OO

here uje connect text in different columns
41O isuj=l

yval = ymi-3. 5#deltah
nll=numsav
n!2=nent
if(debug.ne. 'y') go to 45O
print 42O, nl 1, n!2, p 1, p2

42O format('nil, n 12, pi, p2='2i3, Ix, al, Ix, al >
go to 45O

change column* connect two boxes with a line or yes or no
430 ifdn.ne. 'c'> go to 570

posit ion
read (1O.44O) (iara(iq), iq=l/8O)
call decod
p1 = jchar(1)
p2=jchar(2)
nll=jnum(1)
n!2=jnum(2)
blocks to connect (get number from printout if necessary)

44O format(SOal)
450 call sxy(xvall*yvalIf xpIsvi yplsVf xmisvf ymisvinllipi)

if (debug, ne. 'y') go to 47O
print 460i nl 1, xval 1» yval 1
go to 480

46O format(x nl 1, xval 1, y val 1= ' i 5, 2f 7. 3)
470 call plot(xvall, yvall, 3)
480- call sxy(xva!2. yva!2. xp lsv» yp Isv, xmisv. ymisv, n!2. p2)

if (debug, ne. 'y') go to 49O
print 46O,n!2, xva!2» yva!2
go to 14O

49O call plot(xva!2, yva!2, 2)
if (yn. eq. 'a') go to 500
call aro (xval 1» y val 1* xval 2* yval2* arroui)

500 if (yn. eq. ' ') go to 140
if(yn.ne. 'y') go to 51O
title='yes /

go to 52O
51O if(yn.ne. 'n') go to 14O

title='no '

520 xv-12=<xvall+xval2>/2. +deltax

14

yv!2=(yvall+yval2)/2.
if (xvall. ne. xva!2) xvl2=xv!2-3. *deltax

call symbol (xv!2, yv!2* ht* title* 0, 3)
go to 140

c new y position on page (in inches) new column
530 ifdn.ne. 'q') go to 550

readdO**) newcol* yval
xold=xcent
x c en t= x c en t s+c o 1 w# (n ewe o 1 1)
yval=yvalst-yval
if(debug.ne. 'y') go to 600
print 540* neucol, yval

540 format(' position at col 'i2' at 'f6. 3' inches')
go to 6OO

550 if (In.ne. 's') go to 140
c change character height

readdO* *) ht
deltah=l. 8*ht
deltax=l. l*ht
delth2=deltah/2.
arrow=del tax
arrow2=arrou»/2
if(debug.ne. 'y') go to 14O
print 560* ht

560 format(' change height to ' f5. 2' inches')
go to 14O

570 continue
ifdn.ne. 'p') go to 530

c position next line gives column and line number to position
readdO**) neuicol*nl2
if(debug.eq. 'y') print 580* newcol* n!2

580 format< ' position* col 'i3' across from entry 7 i3)
xold=xcent
xcent=xcents+colu»#(neu)col-l)
if (n!2. ne. 0) yval=y ss <n!2)-icols (n!2)*del th2
if <n!2. ne. 0) iad j = l

c if n!2=0 continue downward
c set up parameters for connecting to next block with a line

590 if <n!2. eq. 0) go to 630
600 if (xcent-xold) 640*620*610
610 p2='w'

pl='e'

go to 650
620 if (yval. 1 1. yss(nent)) go to 630

pl='n'
p2='s'

goto 650
630 pl='s'

p2='n'

go to 650
640 p2='e'

pl='w'

650 isw=2
go to 140
end

15

find length of non blanks in array
function length (title)"
characterise title
common /pp/tlen (BO)
character*! tlen

decode <8O, 1O, title) tlen
1O format (BOal)

1=BO
do 20 i = l* 4O
if (tlen(l). ne. ' ') go to 30

20 1=1-1
 30 length=l

return
end

draw figure with circular ends
subroutine rndend (x lef t* xrt, y up* y low)
common/xypm/xp 1* xmi» ypl> ymi* ht
d isx=xrt-xlef t
xcent=xlef t+disx/2.
di sy=y up y low
ycent=y low+disy/2.
d isx:=d isx/2.
call p 1 ot < x lef t, yup, 3)
call p lot (xrt* y up, 2)
y start=y up
deltay = d isy/20.
ymid=disy/2.
find radius of circle from center to end

yyp=ymid
rsq,=2. *ymid*ymid
r=sqrt<rsq)
do 10 i = l,20
x=sqrt (rsq-yyp*yyp)
xp 1 t=xrt+x ymid
call plot (xplt» ystart* 2)
yyp=yyp-deltay
y star t=y start-del tay

10 continue
call plot (xrt* y low* 2)
call plot (x lef t* y low, 2)
y start=y 1 ow
yyp=ymid
do 2O i=l, 21
x=sqrt (rsq-yy p*yyp)
xplt=xleft-x-*-ymid
call p lot (xp lt» y start* 2)
y star t=y star t-*-d el tay
yyp=yyp deltay

20 continue
xad=r ymi d

xpl=xrt+xad
xmi=x lef t xad
ypl=yup
ymi=y low
return

16

end

subroutine box (x 1 ef t, xrt, y up / yloiu)
c ommon/xy pm/ xp 1 , xmi, ypl, ymi, ht
xp l = xrt
xmi=x left
ypl=yup
ymi = y low
call plot < x lef t, yup, 3)
call plot < xrt* y up) 2)
.call p lot < xrt* y low, 2)
call plot (xleft, y low. 2)
call plot(xleft, yup, 2)
return
end

subroutine c ire le (x 1 ef t, xrt, yup, ylow)
common/xy pm/x p 1 , xmi, ypl, ymi, ht
common /d /debug
character-K-1 debug
disx=(xrt-xleft)/2.
disy=(yup-ylow)/2
xcent=xleft+disx
y cent=y low+d i sy
r=sqrt(disx*disx+disy*disy)
xr = xcent-*-r
if (debug, eq. 'y') go to 30
call plot (xr, ycent, 3)
dtheta=3. 14159265/20.
theta=dtheta
do 20 i=l, 40
yplt=ycent+r*sin(theta)
xp lt=xcent+r*cos(theta)
print 88, xp It, y p It, theta

10 format(' xp 1 1, y p 1 1, theta= '3f 7. 3)
call plot (xp It, yp It, 2)

20 theta=theta+dtheta
30 xpl=xr

xmi=xcent r
y p l=ycent+r
ymi=ycent r
return
end

subroutine diam(xleft, xrt, yup, ylow)
common/xupm/xp 1, xmi, ypl, ymi, ht
c o mm on/d /debug
character*! debug
disx=(xrt-xleft)/2.
disy=(yup ylouj)/2.
xpl = xrt+. 2*disx
xmi = xleft-. 2*disx
ypl=yup+. 2*disy
ymi=yloui . 2*disy
xcent=xleft+disx
uc ent=ymi+d isy

17

if (debug, eq. 'y') return
call p lot < xcent, y p 1 , 3)
call p lot (xmi y c ent, 2)
call p lot (xcent, ymi, 2)
call p 1 ot (xp 1 / y cent, 2)
call p 1 ot (xcent, y p 1 / 2)
return
end

subroutine sxy<xval,yval,xplsv, yplsv, xmisv, ymisv, nil, pi)
dimension xpl sv< 1OO), yp lsv< 1OO) , xmisv< 1OO), ymisv(1OO)
character*! pi
if(pl.ne. 'n') go to 10
xval=(xmisv<nll >+xp lsv(nl 1) >/2.
yval=:yplsv(nl 1)
go to 40

10 if(pl.ne. 'e')go to 20
xval=xplsv(nl 1 >
yval=(yplsv<nll)+ymisv(nll))/2.
go to 4O

20 if (pi. ne. 's'> go to 30
xval=(xmisv(nll)+xplsv(nll)) /2.
yval=ymisv(nll)
go to 40

30 if(pl.ne. 'w') go to 50
xval=xmisv(nl 1)
yval = (yplsv(nll)-«-ymisv(nll)) /2.

40 continue
return

50 print 60
60 format (' no line drawn wrong call ')

return
end

c #####*#****##****#******#****#*##****#**#
subroutine nothing (xleft* xrt, yup, y low)
common/xy pm/xp 1, xmi, ypl» ymi, ht
xp l=xrt
xmi=xleft
ypl=yup
ymi=y low
return
end

subroutine oct(xleft» xrt, yup, yl ow)
common /d /debug
character*! debug
common/xy pm/xp 1, xmi, ypl, ymi, ht
xp l=xrt
ypl=yup
ymi=y low
xrni = x left
xp=xpl-ht
yp=yp 1-ht
xm=xmi-*-ht
ym=ymi+ht
if(debug.eq. 'y') return

IS

call plot(xm, yup, 3)
call plot<xp»yup,2)
call plot(xp l> yp,2)
call p 1 ot (xp 1, ym, 2)
call p1ot(xp, ymi,2)
call plot(xm*ymi*2)
call plot(xmi, ym,2)
call plot(xmi*yp/ 2)
call plot(xm, yup, 2)
return
end

subroutine aro (x I/ y 1. x3, y3* arrow)
xd=x3-xl
yd=y3 y 1
d=sqr t < x d **2+y d **2)
ard=arrow/d
arsiph=yd#ard/2.
arcoph=xd#ard/2.
x2=x3-ard*xd
y2=y3-ard*yd
x4=x2-arsiph
y4=y2+arcoph
x5=x2-*-arsiph
y5=y2-arcoph
cal 1 p lot (x4, y4, 3)
call plot(x3, y3, 2)
cal 1 plot< x5, y5> 2)
return
end

subroutine decod
c This subroutine separates letters (a thru z) and integers
c that have been read into a character array. It allows
c inputs in flowchart program to be read in under an (BOal)
c format but appear to be free field to the user.

character iara(BO), jchar<6), jc(lO)
common/ jn urn/ jnum (6)
common/ara/iara, jchar
data jc/'O', 'I 7 , "2 f , '3'> '4', '5', 7 6 7 , '7'» '8' , '9'/
do 1O i = l,6
jchar(i)=' '

10 jnum(i>=0
ist=l
n=0
nchar=0

20 do 6O i=ist*8O
c print */i/iara<i)

if(iara(i>. le. '9') go to 40
if < iara < i). gt. 'z') go to 60
if (iara(i). It. 'a') go to 50

c this is a character
30 nchar=nchar+l

jchar<nchar)=iara(i)
go to 60

c is this a number?

19

40 if(iara(i). ge. '0') go to 70
go to 60

c********** Both upper and lower case characters are assumed
c possible but only lower case characters are used
c**********

50 if(iara(i). gt. 'Z'> go to 60
if(iara(i). It. 'A') go to 60
ic = ichar(iara(i))
ic=ic+32
iara(i)=char(ic)
go to 30

60 continue
return

7O ist=i
num=0
do 90 i=isti80
do 80 j=li 10
if (iara(i). ne. jc(j)) go to 80
num=1O*num+j-1
go to 9O

80 continue
go to 100

90 continue
i=81.

100 ist=i
n=n+l
jnum(n)=num
if (ist. le. 80) go to 20
return
end

